Transcription Factor Pathways and Congenital Heart Disease
Congenital heart disease is a major cause of morbidity and mortality throughout life. Mutations in numerous transcription factors have been identified in patients and families with some of the most common forms of cardiac malformations and arrhythmias. This review discusses factor pathways known to be important for normal heart development and how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. A comprehensive, current list of known transcription factor mutations associated with congenital heart disease is provided, but the review focuses primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. By understanding the interaction partners, transcriptional targets, and upstream activators of these core cardiac transcription factors, additional information about normal heart formation and further insight into genes and pathways affected in congenital heart disease should result.
Keywords: Transcription factors, Tbx5, Nkx2-5, GATA4, MEF2C, mouse, human, conduction system, septal defect, VSD, ASD, pediatric
Introduction
Defects in heart formation are a significant cause of neonatal morbidity and mortality in humans, while defects in the formation of the cardiac conduction system present a significant mortality risk throughout life (Hoffman et al., 2004; Rubart and Zipes, 2005). Congenital heart defects may be broadly grouped into two major categories: 1) morphological abnormalities, including developmental defects resulting in structural malformations; and 2) functional abnormalities, including cardiac rhythm disturbances and cardiomyopathies. While the underlying genetic basis for many of these defects remains elusive, mutations in genes encoding core cardiac transcription factors have emerged as major contributors to many forms of congenital heart disease.
As more has been learned about the transcriptional circuits controlling normal heart development, the number of transcription factors implicated in human congenital heart disease has grown concomitantly. In this review, we highlight transcription factor pathways known to be important for normal heart development and discuss how abnormalities in these pathways have been linked to morphological and functional forms of congenital heart defects. We focus primarily on three key transcription factors, Nkx2-5, GATA4, and Tbx5, and their known biochemical and genetic partners. All three of these transcription factors play central roles in cardiac development, and mutations in each have been implicated in congenital heart disease. We discuss the hypothesis that the important genetic or biochemical interactions between these transcription factors during normal development may be important causes or modifiers of congenital heart defects in humans.
Basic Heart Development
Mammalian heart development begins with the specification of cardiac progenitor cells within the anterior lateral plate mesoderm (Brand, 2003; Evans et al.,; Harvey, 2002). These progenitor cells condense into two lateral heart primordia and include both myocardial and endocardial lineage precursors around day 15 of human embryonic development and embryonic day (E) 7.5 of mouse development (Brand, 2003; Harvey, 2002; Srivastava, 2006). By E8.5 of mouse development, and 3 weeks of human development, the bilaterally paired condensations of cardiac precursors move medially to form a primitive heart tube (Harvey, 2002). The linear heart tube undergoes rightward looping as cells from the second heart field are added to both the inflow and outflow poles (Black, 2007; Vincent and Buckingham, 2010).
Following cardiac looping, endocardial cushions begin to form within the outflow tract (OFT) and at the common atrioventricular canal (AVC) during the sixth and seventh weeks of human development (Person et al., 2005). The endocardial cushions help to septate the heart into the four cardiac chambers and divide the outflow tract into the aorta and pulmonary artery (Combs and Yutzey, 2009; Person et al., 2005). The early cardiac conduction system also begins to be specified at this time, while the developing heart receives important contributions from the neural crest and proepicardium (Brand, 2003; Hutson and Kirby, 2007; Vincent and Buckingham, 2010). Toward the later stages of development, the heart undergoes extensive remodeling before it assumes the mature four-chambered structure with divided inflow and outflow, finely formed valve leaflets and functional conduction network (Combs and Yutzey, 2009; Evans et al., 2010); Figure 1 ).
Schematic representations of several stages of mammalian heart development with key events in mouse and human heart development denoted. Mouse development is denoted in embryonic days (E). Ao, aorta; AVC, atrioventricular canal; CCS, cardiac conduction system; CM, cardiac mesoderm; LA, left atrium; LV, left ventricle; NCC, neural crest cells; OFT, outflow tract; PA, pulmonary artery; RA, right atrium; RV, right ventricle; SAN, sinoatrial node; SV, sinus venosus; V ventricle.
A Group of “Core Cardiac Transcription Factors” Controls Heart Development
A group of transcription factors, including the homeodomain protein Nkx2-5, GATA family zinc finger proteins GATA4, 5, and 6, MEF2 factors and SRF (MADS box proteins), T-box factors, including Tbx1, Tbx2, Tbx3, Tbx5, Tbx18, and Tbx20, and the Lim-homeodomain protein Isl1, is critical for heart development (Black and Cripps, 2010; Greulich et al., 2011; Harvey et al., 2002; He et al., 2011; Peterkin et al., 2005). These core transcription factors interact with each other and with an array of other transcription factors to control heart development. Later, many of the same transcription factors are re-utilized to control cardiac chamber maturation, conduction system development, and endocardial cushion remodeling (Oka et al., 2007; Olson, 2006).
The core cardiac transcription factors function in a mutually reinforcing transcriptional network in which each of the factors regulate the expression of the others (Black, 2007; He et al., 2011; Olson, 2006). Several of the core factors involved in heart development also function as biochemical partners for each other, reflecting a complex molecular and genetic interplay controlling multiple stages of heart and conduction system development ( Figures 2 and and3). 3 ). Therefore, it is not surprising that mutations in several of the genes encoding the core cardiac transcription factors are associated with congenital heart disease ( Table I ). Nkx2-5, GATA4, and Tbx5 are perhaps the most studied and well characterized of the cardiac transcription factors implicated in patients with congenital heart disease, and all three are critical for normal heart development.
Transcription factor pathways discussed in this review that are involved in myocardial development and heart morphogenesis
Transcription factor pathways discussed in this review that are involved in cardiac conduction system development, maturation, and function.
Table I
Transcription factors with mutations found in human patients with congenital heart disease and reported interaction partners.
Transcription Factor | Associated CHD Phenotype | References |
---|
ANKRD1 | TAPVR | (Cinquetti et al., 2008) |
CITED2 | TOF, ASD, VSD, AS, PS, SI, TGA, RVOTO, TAPVR | (Sperling et al., 2005) |
ETS1 | DORV, HLHS, ASD | (Ye et al., 2010) |
FOG2/ZFPM2 | TOF, DORV | (De Luca et al., 2011; Finelli et al., 2007; Pizzuti et al., 2003) |
FOXC1 (18p11.2 del)/FOXC2 | HLHS, PVA, PAH, VSD, OA, ASD, PDA, BSVC | (Brice et al., 2002; Finegold et al., 2001; Maclean et al., 2005; Yu et al., 2010) |
FOXH1 | TGA | (De Luca et al., 2010) |
GATA4 | ASD, AVSD, VSD, PS, AR, VPS, PDA, TOF, AF | (Butler et al., 2010; Chen et al., 2010a; Chen et al., 2010b; Chen et al., 2010c; De Luca et al., 2010; Dinesh et al., 2010b; Garg et al., 2003; Giglio et al., 2000; Guida et al., 2010; Hirayama-Yamada et al., 2005; Liu et al., 2011; Nemer et al., 2006; Pehlivan et al., 1999; Peng et al., 2010; Posch et al., 2010a; Rajagopal et al., 2007; Reamon-Buettner et al., 2007; Sarkozy et al., 2005; Schluterman et al., 2007; Tomita-Mitchell et al., 2007; Wang et al., 2010; Wang et al., 2011a; Zhang et al., 2008; Zhang et al., 2009b) |
GATA6 | PTA, TOF, ASD | (Kodo et al., 2009; Lin et al., 2010; Maitra et al., 2010) |
HAND1 | VSD, ASD, AVSD | (Cheng et al., 2011a; Goldmuntz et al., 2011; Reamon-Buettner et al., 2008; Reamon-Buettner et al., 2009; Wang et al., 2011a) |
HAND2 | TOF, DORV, PS | (Shen et al., 2010) |
HOXA1 | DORV, TOF, VSD, TAPVR, IAA, PDA | (Bosley et al., 2008) |
IRX4 | VSD | (Cheng et al., 2011b) |
JAG1 | TOF, VSD, PPS, Ao dextroposition | (Eldadah et al., 2001; Greenway et al., 2009; Heritage et al., 2002; Heritage et al., 2000; Krantz et al., 1999; Li et al., 2010; Li et al., 1997a; Oda et al., 1997; Rauch et al., 2010) |
MYOCD | PVD | (Ransom et al., 2008) |
NFATC1 | VSD | (Yehya et al., 2006) |
NKX2-5 | ASD, VSD, AVSD, TOF, SVAS, LVNC, PA, PS, PDA, MV anomalies, conduction defects, DORV, PAPVR, TAPVR, heterotaxy, TGA | (Baekvad-Hansen et al., 2006; Benson et al., 1999; De Luca et al., 2010; Dinesh et al., 2010a; Elliott et al., 2003; Gioli-Pereira et al., 2010; Gutierrez-Roelens et al., 2002; Ikeda et al., 2002; Konig et al., 2006; McElhinney et al., 2003b; Ouyang et al., 2011; Pabst et al., 2008; Pauli et al., 1999; Rauch et al., 2010; Reamon-Buettner and Borlak, 2004a; Reamon-Buettner et al., 2004; Schott et al., 1998; Stallmeyer et al., 2010; Wang et al., 2011b; Zhang et al., 2009a; Zhu et al., 2000) |
NKX2-6 | PTA | (Heathcote et al., 2005) |
PITX2 | AF | (Franco et al., 2011) |
SALL4 | VSD, PTA, TOF | (Paradisi and Arias, 2007; Wang et al., 2010) |
TBX1/22q11del | IAA, PTA, AAA, TOF, malaligned VSD | (Akcakus et al., 2003; Alikasifoglu et al., 2000; Beauchesne et al., 2005; Borgmann et al., 1999; Botto et al., 2003; Brunet et al., 2009; Calderon et al., 2009; Devriendt et al., 1996; Gawde et al., 2006; Gioli-Pereira et al., 2008; Goldmuntz et al., 1998; Goodship et al., 1998; Henwood et al., 2001; Hokanson et al., 2001; Hu et al., 2009; Iserin et al., 1998; Ito et al., 2002; Jiang et al., 2005; Jiang et al., 2010; Lindsay et al., 1995; Lupski et al., 1991; Matsuoka et al., 1994; McElhinney et al., 2001; McElhinney et al., 2003a; Oh et al., 2002; Poon et al., 2007; Rauch et al., 2004; Rauch et al., 2010; Raymond et al., 1997; Repetto et al., 2009; Rope et al., 2009; Ryan et al., 1997; Sorensen et al., 2010; Swaby et al., 2011; Tomita-Mitchell et al., 2010; van Engelen et al., 2010; Verhoeven et al., 2011; Wilson et al., 1992; Worthington et al., 1998; Wozniak et al., 2010; Yakut et al., 2006; Yates et al., 1996; Yong et al., 1999) |
22q11dup | VSD, HLHS, TAPVR, conotruncal anomalies | (Ensenauer et al., 2003; Ou et al., 2008; Sparkes et al., 2005) |
TBX5 | ASD, VSD, AVSD, rhythm abnormalities | (Basson et al., 1997; Li et al., 1997b; Liu et al., 2009; McDermott et al., 2008; Postma et al., 2008; Reamon-Buettner and Borlak, 2004b; Zhu et al., 2008) |
TBX20 | ASD, dilated cardiomyopathy, valve defects | (Hammer et al., 2008; Kirk et al., 2007; Liu et al., 2008; Posch et al., 2010b; Qian et al., 2008) |
TFAP2B | Char syndrome, PDA | (Chen et al., 2011; Mani et al., 2005; Satoda et al., 2000; Vaughan and Basson, 2000; Zhao et al., 2001) |
ZEB2 | Mowat-Wilson Syndrome | (Adam et al., 2006; Balasubramaniam et al., 2010; Dastot-Le Moal et al., 2007; Garavelli et al., 2009; Heinritz et al., 2006; McGaughran et al., 2005; Sasongko et al., 2007; Saunders et al., 2009; Wilson et al., 2003; Zweier et al., 2005) |
ZIC3 | TGA, DORV, PS, TAPVR, ASD, AVSD, heterotaxy | (Bedard et al., 2010; De Luca et al., 2010; Ware et al., 2004) |
Abbreviations used: AAA, aortic arch anomalies; AF, atrial fibrillation; AR, aortic regurgitation; AS, aortic stenosis; ASD, atrial septal defect; AVC, atrioventricular canal; AVSD atrioventricular septal defect; BAV, bicuspid aortic valve; BPV, bicuspid pulmonary valve; BSVC, bilateral superior vena cava; DORV, double outlet right ventricle; HAA, hypoplastic aortic arch; HCM, hypertrophic cardiomyopathy; HLHS, hypoplastic left heart syndrome; HOCM, hypertrophic obstructive cardiomyopathy; IAA, interrupted aortic arch; LVH, left ventricular hypertrophy; LVNC, left ventricular non-compaction; MS, mitral stenosis; MV, mitral valve; MVD, mitral valve dysplasia; MVP, mitral valve prolapse; OA, overriding aorta; PA, pulmonary atresia; PAH, pulmonary artery hypoplasia; PAPVR, partial anomalous pulmonary venous return; PDA, patent ductus arteriosus; PPAS, peripheral pulmonary artery stenosis; PPS, peripheral pulmonic stenosis; PS, pulmonary stenosis; PTA, persistent truncus arteriosus; PVA, pulmonary valve atresia; PVD, pulmonary valve dysplasia; PVS, pulmonary valve stenosis; RAA, right aortic arch; RVOTO, right ventricular outflow tract obstruction; SI, situs inversus; SVAS, supravalvar aortic stenosis; SVPS, supravalvar pulmonary stenosis; SVT, supraventricular tachycardia; TAPVR, total anomalous venous return; TGA, transposition of the great arteries; TOF, tetralogy of Fallot; TVP, tricuspid valve prolapse; VAS, valvar aortic stenosis; VPS, valvar pulmonary stenosis; VSD, ventricular septal defect.
Nkx2-5 is a central regulator of heart development and is affected in congenital heart disease
The homeodomain protein Nkx2-5 controls many aspects of cardiac development, beginning with specification and proliferation of cardiac precursors to later events, such as the formation of the outflow tract (Harvey et al., 2002). Nkx2-5 acts near the top of a large transcriptional cascade controlling multiple cardiac genes. Expression of Nkx2-5 is regulated by GATA factors and SMAD proteins and is also controlled by Nkx2-5 itself in an auto-regulatory loop (Liberatore et al., 2002; Lien et al., 2002; Lien et al., 1999; Searcy et al., 1998). More recently, Nkx2-5 expression in the second heart field was shown to be dependent on the Isl1, while interactions between Nkx2-5, BMP2, and SMAD1 control cardiac progenitor specification and proliferation (Prall et al., 2007; Takeuchi et al., 2005).
Nkx2-5 acts combinatorially with other core cardiac transcription factors to promote cardiomyocyte differentiation and chamber identity. For example, Nkx2-5 and the basic helix-loop-helix protein Hand2 cooperate to activate Irx4, which is necessary for determining ventricular identity (Yamagishi et al., 2001). Ventricular identity is also controlled by Nkx2-5 through a direct physical interaction with the MADS box transcription factor MEF2C (Vincentz et al., 2008). Nkx2-5 interacts with another MADS box transcription factor, SRF, and GATA4 to promote cardiac sarcomeric protein gene expression (Sepulveda et al., 2002). Nkx2-5 also plays a role in outflow tract development through regulation of the transcriptional repressor Jarid2 (Barth et al., 2010).
In mice, loss of Nkx2-5 results in embryonic lethality with failure of cardiac looping and deficient myocardial differentiation (Lyons et al., 1995; Tanaka et al., 1999). In humans, mutations in NKX2-5 have been found in patients with a variety of structural malformations including septation defects, alignment defects, and compaction defects, and cardiac conduction defects (Benson, 2010; Reamon-Buettner and Borlak). Patients with NKX2-5 mutations also have cardiac rhythm abnormalities (Benson, 2010). Consistent with those observations, Nkx2-5 functions in the development and maintenance of the cardiac conduction system in the mouse in a transcriptional cascade that involves interactions with Tbx5 and Id2 (Jay et al., 2004; Moskowitz et al., 2007). Nkx2-5 heterozygous mice have progressive atrioventricular (AV) block, a phenotype similar to part of the spectrum of congenital heart disease phenotypes described in human patients with NKX2-5 mutations (Benson, 2010; Biben et al., 2000). In addition, mutation of Shox2, an upstream transcriptional repressor of Nkx2-5 expressed in the sinoatrial node (SAN), results in mid-gestational embryonic lethality in mice with severe hypoplasia of the SAN and associated abnormal heart rate (Blaschke et al., 2007; Espinoza-Lewis et al., 2009). The essential role of Nkx2-5 in multiple distinct aspects of heart development and congenital heart disease suggests that modifiers, targets, or partners of Nkx2-5 are also likely to be associated with congenital heart disease.
GATA4 regulates cardiac morphogenesis and myoctye proliferation and is frequently associated with congenital heart disease
The zinc finger transcription factor GATA4 plays a central role in cardiac development and is critical for survival of the embryo (Peterkin et al., 2005; Pikkarainen et al., 2004). Mice that lack GATA4 have abnormal ventral folding, failure of midline fusion of the heart primordia, and extensive endoderm defects with embryonic lethality by E10.5 (Kuo et al., 1997; Molkentin et al., 1997). Dosage of GATA4 is responsible for regulation of cardiac morphogenesis, and graded reduction of GATA4 leads to abnormal cardiac development with a common atrioventricular canal, double outlet right ventricle, and hypoplasia of the ventricular myocardium (Pu et al., 2004). GATA4 is also an important regulator of cardiomyocyte proliferation through direct transcriptional activation of cell cycle regulators, including cyclin D2 and cdk4, which may explain the lack of sufficient cardiac septation and chamber hypoplasia observed in patients with GATA4 mutations (Rajagopal et al., 2007; Rojas et al., 2008).
Like Nkx2-5, GATA4 acts combinatorially with other core cardiac transcription factors to regulate heart development, including the previously discussed interactions with Nkx2-5 (Liberatore et al., 2002; Lien et al., 2002; Lien et al., 1999; Searcy et al., 1998). GATA4 also functions as an important partner for the T-box transcription factor Tbx5; mice doubly heterozygous for Gata4 and Tbx5 die at E15.5 due to insufficient development of the ventricular myocardium and have atrial septal defects (Maitra et al., 2009). Furthermore, GATA4 and Tbx5 directly interact and activate expression of Cx30.2, which encodes a gap-junction protein enriched in the AV node and required for normal AV node delay (Munshi et al., 2009).
In addition to interactions with Nkx2-5 and Tbx5, GATA4 also functions as a transcriptional partner or in transcriptional pathways with several other important cardiac transcription factors, including MEF2C. MEF2 physically interacts with GATA factors, including GATA4 and 6 to synergistically activate the expression of Nppa, a-MHC, a-CA, and B-type natriuretic peptide (BNP) (Morin et al., 2000). Additionally, GATA transcription factors, including GATA4, directly activate Mef2c transcription in the second heart field in combination with Isl1 (Dodou et al., 2004). GATA4 also interacts with the BMP signaling effector Smad4 within the developing endocardium, and importantly, GATA4 mutations identified in human patients with septation defects were found to cause disrupted interaction between GATA4 and Smad4 (Moskowitz et al., 2011). Other patients with deletions in the GATA4 locus have more severe forms of congenital heart disease, including septation defects, outflow tract alignment defects, dextrocardia, and pulmonary stenosis (Hirayama-Yamada et al., 2005; Okubo et al., 2004; Pehlivan et al., 1999; Sarkozy et al., 2005). Linkage analyses were used to demonstrate associations between GATA4 mutations and multiple cardiac defects including ASD and VSD (Garg et al., 2003; Hirayama-Yamada et al., 2005; Okubo et al., 2004; Sarkozy et al., 2005). Interestingly, one of the GATA4 mutations described in these family studies resulted in a missense mutation within the protein-protein interaction domain of GATA4. This alteration led to a disruption of the interaction of GATA4 and Tbx5, while it maintained the ability of GATA4 to interact with Nkx2-5 (Garg et al., 2003). These data suggest a cooperative role for GATA4 and Tbx5 in cardiac septation, and further support the notion that transcription factor interactions with their partners underscore congenital heart defects.
Involvement of Tbx5 in heart development and congenital heart disease
Genetic studies in mice have established that Tbx5 plays an important role in cardiac morphogenesis and development of the conduction system. Embryonic mice that lack Tbx5 have abnormal heart tube formation with hypoplastic atria, whereas over-expression of Tbx5 results in inhibition of ventricular maturation (Bruneau et al., 2001). Mice that lack one copy of Tbx5 have ASD, occasional VSD, and AV block, similar to mice lacking a single copy of Nkx2-5 (Bruneau et al., 2001). Like the other core cardiac transcription factors, Tbx5 is involved in multiple transcription factor pathways and combinatorial interactions involved in morphological development of the heart and in the development of the cardiac conduction system (Hatcher and Basson, 2009). Mice doubly heterozygous for Tbx5 and Gata4 have growth retardation and early neonatal lethality with AVSD and myocardial thinning, similar to the human GATA4 mutant phenotype (Maitra et al., 2009). Tbx5 also physically interacts with Nkx2-5 to control gene expression in cells of the cardiac conduction system (Bruneau et al., 2001; Hiroi et al., 2001), and Tbx5 and MEF2C physically interact and form a transcriptional complex resulting in synergistic activation of Myh6 expression (Ghosh et al., 2009).
Given its interactions with GATA4, Nkx2-5, and other core cardiac transcription factors, and its extensive role in cardiac morphological and conduction system development, it is not surprising that TBX5 is associated with human congenital heart disease. TBX5 mutations were first identified in human patients with Holt-Oram syndrome (Basson et al., 1997; Li et al., 1997). These patients have defects in cardiac septation with secundum ASD and VSD as well as defects in cardiac conduction system and upper limb formation (Basson et al., 1994).
Summary and future directions
In addition to genetic, transcriptional, and biochemical interactions among themselves, Tbx5, Nkx2-5, and GATA4 each interact extensively with other cardiac transcription factors during normal heart development. In a few cases, mutations in these transcription factors have been implicated in congenital heart disease ( Table I ), but overall, the role that these interacting partners play in human heart malformations has remained largely undefined. Interestingly, Nkx2-5, GATA4, and Tbx5 each interact independently with MEF2C (Ghosh et al., 2009; Morin et al., 2000; Vincentz et al., 2008). MEF2C is critical for normal cardiac development in mice. Mice that lack MEF2C die early in development with severe cardiovascular defects, including failure of normal cardiac looping (Lin et al., 1997), suggesting that MEF2C might be associated with congenital heart disease in humans, although this has not been demonstrated to date.
An excellent example of a transcriptional partner and that has been associated with congenital heart disease is the friend of GATA (FOG) 2. FOG2 is a cofactor for GATA4, and mutations in FOG2 have been found in a group of patients with congenital heart disease (Finelli et al., 2007; Svensson et al., 1999). FOG2 mutations were also identified using a candidate-based approach in patients with tetralogy of Fallot (Pizzuti et al., 2003). Targeted mutation of Fog2 in a mouse model resulted in embryonic lethality due to congestive heart failure with morphological abnormalities resembling those seen in human tetralogy of Fallot patients, and importantly, those seen in Gata4 loss-of-function mutants (Svensson et al., 2000; Tevosian et al., 2000). Knowing the importance of GATA family members in directing normal heart formation and the function of FOG2 in modulating GATA activity, FOG2 was considered as a possible candidate and was subsequently found to be responsible for a common form of human congenital heart disease.
Using multiple model systems, combined with human genetic studies, we are gaining an increased appreciation for the intricate networks of transcriptional modifiers and partners that are required for normal heart development. Importantly this list of transcriptional modifiers, targets, and partners is very likely to contain genes with mutations that are associated with congenital heart disease. By further studying the interactions of the core cardiac transcription factors, we will more clearly understand how these transcription factors interact to promote normal heart development and how mutations affecting these transcription factor pathways result in congenital heart disease.
Acknowledgments
We thank members of the Black lab for helpful discussions and comments. The Black lab is supported by funding from the NIH.
References
- Adam MP, Schelley S, Gallagher R, Brady AN, Barr K, Blumberg B, Shieh JT, Graham J, Slavotinek A, Martin M, Keppler-Noreuil K, Storm AL, Hudgins L. Clinical features and management issues in Mowat-Wilson syndrome. Am J Med Genet A. 2006; 140 :2730–2741. [PubMed] [Google Scholar]
- Akcakus M, Ozkul Y, Gunes T, Kurtoglu S, Cetin N, Kisaarslan AP, Dundar M. Associated anomalies in asymmetric crying facies and 22q11 deletion. Genet Couns. 2003; 14 :325–330. [PubMed] [Google Scholar]
- Alikasifoglu M, Malkoc N, Ceviz N, Ozme S, Uludogan S, Tuncbilek E. Microdeletion of 22q11 (CATCH 22) in children with conotruncal heart defect and extracardiac malformations. Turk J Pediatr. 2000; 42 :215–218. [PubMed] [Google Scholar]
- Baekvad-Hansen M, Tumer Z, Delicado A, Erdogan F, Tommerup N, Larsen LA. Delineation of a 2.2 Mb microdeletion at 5q35 associated with microcephaly and congenital heart disease. Am J Med Genet A. 2006; 140 :427–433. [PubMed] [Google Scholar]
- Balasubramaniam S, Keng WT, Ngu LH, Michel LG, Irina G. Mowat-Wilson syndrome: the first two Malaysian cases. Singapore Med J. 2010; 51 :e54–57. [PubMed] [Google Scholar]
- Barth JL, Clark CD, Fresco VM, Knoll EP, Lee B, Argraves WS, Lee KH. Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis. Dev Dyn. 2010; 239 :2024–2033. [PMC free article] [PubMed] [Google Scholar]
- Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997; 15 :30–35. [PubMed] [Google Scholar]
- Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, Seidman JG, Seidman CE. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome) N Engl J Med. 1994; 330 :885–891. [PubMed] [Google Scholar]
- Beauchesne LM, Warnes CA, Connolly HM, Ammash NM, Grogan M, Jalal SM, Michels VV. Prevalence and clinical manifestations of 22q11.2 microdeletion in adults with selected conotruncal anomalies. J Am Coll Cardiol. 2005; 45 :595–598. [PubMed] [Google Scholar]
- Bedard JE, Haaning AM, Ware SM. Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease. PLoS One. 2010; 6 :e23755. [PMC free article] [PubMed] [Google Scholar]
- Benson DW. Genetic origins of pediatric heart disease. Pediatr Cardiol. 2010; 31 :422–429. [PubMed] [Google Scholar]
- Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999; 104 :1567–1573. [PMC free article] [PubMed] [Google Scholar]
- Biben C, Weber R, Kesteven S, Stanley E, McDonald L, Elliott DA, Barnett L, Koentgen F, Robb L, Feneley M, Harvey RP. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000; 87 :888–895. [PubMed] [Google Scholar]
- Black BL. Transcriptional pathways in second heart field development. Semin Cell Dev Biol. 2007; 18 :67–76. [PMC free article] [PubMed] [Google Scholar]
- Black BL, Cripps RM. Myocyte Enhancer Factor 2 Transcription Factors in Heart development and Disease. In: Rosenthal N, Harvey RP, editors. Heart Development and Regeneration. Academic Press; Oxford: 2010. pp. 673–699. [Google Scholar]
- Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, Scholer H, Feitsma H, Rottbauer W, Blum M, Meijlink F, Rappold G, Gittenberger-de Groot AC. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007; 115 :1830–1838. [PubMed] [Google Scholar]
- Borgmann S, Luhmer I, Arslan-Kirchner M, Kallfelz HC, Schmidtke J. A search for chromosome 22q11.2 deletions in a series of 176 consecutively catheterized patients with congenital heart disease: no evidence for deletions in non-syndromic patients. Eur J Pediatr. 1999; 158 :958–963. [PubMed] [Google Scholar]
- Bosley TM, Alorainy IA, Salih MA, Aldhalaan HM, Abu-Amero KK, Oystreck DT, Tischfield MA, Engle EC, Erickson RP. The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A. 2008; 146A :1235–1240. [PMC free article] [PubMed] [Google Scholar]
- Botto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O’Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics. 2003; 112 :101–107. [PubMed] [Google Scholar]
- Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258 :1–19. [PubMed] [Google Scholar]
- Brice G, Mansour S, Bell R, Collin JR, Child AH, Brady AF, Sarfarazi M, Burnand KG, Jeffery S, Mortimer P, Murday VA. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet. 2002; 39 :478–483. [PMC free article] [PubMed] [Google Scholar]
- Brunet A, Armengol L, Heine D, Rosell J, Garcia-Aragones M, Gabau E, Estivill X, Guitart M. BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1. BMC Med Genet. 2009; 10 :144. [PMC free article] [PubMed] [Google Scholar]
- Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001; 106 :709–721. [PubMed] [Google Scholar]
- Butler TL, Esposito G, Blue GM, Cole AD, Costa MW, Waddell LB, Walizada G, Sholler GF, Kirk EP, Feneley M, Harvey RP, Winlaw DS. GATA4 mutations in 357 unrelated patients with congenital heart malformation. Genet Test Mol Biomarkers. 2010; 14 :797–802. [PubMed] [Google Scholar]
- Calderon JF, Puga AR, Guzman ML, Astete CP, Arriaza M, Aracena M, Aravena T, Sanz P, Repetto GM. VEGFA polymorphisms and cardiovascular anomalies in 22q11 microdeletion syndrome: a case-control and family-based study. Biol Res. 2009; 42 :461–468. [PubMed] [Google Scholar]
- Chen MW, Pang YS, Guo Y, Pan JH, Liu BL, Shen J, Liu TW. GATA4 mutations in Chinese patients with congenital cardiac septal defects. Pediatr Cardiol. 2010a; 31 :85–89. [PubMed] [Google Scholar]
- Chen Y, Han ZQ, Yan WD, Tang CZ, Xie JY, Chen H, Hu DY. A novel mutation in GATA4 gene associated with dominant inherited familial atrial septal defect. J Thorac Cardiovasc Surg. 2010b; 140 :684–687. [PubMed] [Google Scholar]
- Chen Y, Mao J, Sun Y, Zhang Q, Cheng HB, Yan WH, Choy KW, Li H. A novel mutation of GATA4 in a familial atrial septal defect. Clin Chim Acta. 2010c; 411 :1741–1745. [PubMed] [Google Scholar]
- Chen YW, Zhao W, Zhang ZF, Fu Q, Shen J, Zhang Z, Ji W, Wang J, Li F. Familial nonsyndromic patent ductus arteriosus caused by mutations in TFAP2B. Pediatr Cardiol. 2011; 32 :958–965. [PubMed] [Google Scholar]
- Cheng Z, Lib L, Li Z, Liu M, Yan J, Wang B, Ma X. Two novel HAND1 mutations in Chinese patients with ventricular septal defect. Clin Chim Acta. 2011a in press. [PubMed] [Google Scholar]
- Cheng Z, Wang J, Su D, Pan H, Huang G, Li X, Li Z, Shen A, Xie X, Wang B, Ma X. Two novel mutations of the IRX4 gene in patients with congenital heart disease. Hum Genet. 2011b; 130 :657–662. [PubMed] [Google Scholar]
- Cinquetti R, Badi I, Campione M, Bortoletto E, Chiesa G, Parolini C, Camesasca C, Russo A, Taramelli R, Acquati F. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return. Hum Mutat. 2008; 29 :468–474. [PubMed] [Google Scholar]
- Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009; 105 :408–421. [PMC free article] [PubMed] [Google Scholar]
- Dastot-Le Moal F, Wilson M, Mowat D, Collot N, Niel F, Goossens M. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat. 2007; 28 :313–321. [PubMed] [Google Scholar]
- De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, Mingarelli R, Bellacchio E, Tuo G, Limongelli G, Digilio MC, Marino B, Dallapiccola B. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010; 96 :673–677. [PubMed] [Google Scholar]
- De Luca A, Sarkozy A, Ferese R, Consoli F, Lepri F, Dentici ML, Vergara P, De Zorzi A, Versacci P, Digilio MC, Marino B, Dallapiccola B. New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet. 2011; 80 :184–190. [PubMed] [Google Scholar]
- Devriendt K, Eyskens B, Swillen A, Dumoulin M, Gewillig M, Fryns JP. The incidence of a deletion in chromosome 22Q11 in sporadic and familial conotruncal heart disease. Eur J Pediatr. 1996; 155 :721. [PubMed] [Google Scholar]
- Dinesh SM, Kusuma L, Smitha R, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB. Single-nucleotide polymorphisms of NKX2.5 found in congenital heart disease patients of Mysore, South India. Genet Test Mol Biomarkers. 2010a; 14 :873–879. [PubMed] [Google Scholar]
- Dinesh SM, Lingaiah K, Savitha MR, Krishnamurthy B, Narayanappa D, Ramachandra NB. GATA4 Specific Nonsynonymous Single-Nucleotide Polymorphisms in Congenital Heart Disease Patients of Mysore, India. Genet Test Mol Biomarkers. 2010b; 15 :715–720. [PubMed] [Google Scholar]
- Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development. 2004; 131 :3931–3942. [PubMed] [Google Scholar]
- Eldadah ZA, Hamosh A, Biery NJ, Montgomery RA, Duke M, Elkins R, Dietz HC. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet. 2001; 10 :163–169. [PubMed] [Google Scholar]
- Elliott DA, Kirk EP, Yeoh T, Chandar S, McKenzie F, Taylor P, Grossfeld P, Fatkin D, Jones O, Hayes P, Feneley M, Harvey RP. Cardiac homeobox gene NKX2–5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol. 2003; 41 :2072–2076. [PubMed] [Google Scholar]
- Ensenauer RE, Adeyinka A, Flynn HC, Michels VV, Lindor NM, Dawson DB, Thorland EC, Lorentz CP, Goldstein JL, McDonald MT, Smith WE, Simon-Fayard E, Alexander AA, Kulharya AS, Ketterling RP, Clark RD, Jalal SM. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet. 2003; 73 :1027–1040. [PMC free article] [PubMed] [Google Scholar]
- Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol. 2009; 327 :376–385. [PMC free article] [PubMed] [Google Scholar]
- Evans SM, Yelon D, Conlon FL, Kirby ML. Myocardial lineage development. Circ Res. 2010; 107 :1428–1444. [PMC free article] [PubMed] [Google Scholar]
- Finegold DN, Kimak MA, Lawrence EC, Levinson KL, Cherniske EM, Pober BR, Dunlap JW, Ferrell RE. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum Mol Genet. 2001; 10 :1185–1189. [PubMed] [Google Scholar]
- Finelli P, Pincelli AI, Russo S, Bonati MT, Recalcati MP, Masciadri M, Giardino D, Cavagnini F, Larizza L. Disruption of friend of GATA 2 gene (FOG-2) by a de novo t(8;10) chromosomal translocation is associated with heart defects and gonadal dysgenesis. Clin Genet. 2007; 71 :195–204. [PubMed] [Google Scholar]
- Franco D, Chinchilla A, Daimi H, Dominguez JN, Aranega A. Modulation of conductive elements by Pitx2 and their impact on atrial arrhythmogenesis. Cardiovasc Res. 2011; 91 :223–231. [PubMed] [Google Scholar]
- Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F, Verri R, Albertini E, Favaron E, Zignani M, Orteschi D, Bianchi P, Faravelli F, Forzano F, Seri M, Wischmeijer A, Turchetti D, Pompilii E, Gnoli M, Cocchi G, Mazzanti L, Bergamaschi R, De Brasi D, Sperandeo MP, Mari F, Uliana V, Mostardini R, Cecconi M, Grasso M, Sassi S, Sebastio G, Renieri A, Silengo M, Bernasconi S, Wakamatsu N, Neri G. Mowat-Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet A. 2009; 149A :417–426. [PubMed] [Google Scholar]
- Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, Matsuoka R, Cohen JC, Srivastava D. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424 :443–447. [PubMed] [Google Scholar]
- Gawde H, Patel ZM, Khatkhatey MI, D’Souza A, Babu S, Adhia R, Kerkar P. Chromosome 22 microdeletion by F.I.S.H. in isolated congenital heart disease. Indian J Pediatr. 2006; 73 :885–888. [PubMed] [Google Scholar]
- Ghosh TK, Song FF, Packham EA, Buxton S, Robinson TE, Ronksley J, Self T, Bonser AJ, Brook JD. Physical interaction between TBX5 and MEF2C is required for early heart development. Mol Cell Biol. 2009; 29 :2205–2218. [PMC free article] [PubMed] [Google Scholar]
- Giglio S, Graw SL, Gimelli G, Pirola B, Varone P, Voullaire L, Lerzo F, Rossi E, Dellavecchia C, Bonaglia MC, Digilio MC, Giannotti A, Marino B, Carrozzo R, Korenberg JR, Danesino C, Sujansky E, Dallapiccola B, Zuffardi O. Deletion of a 5-cM region at chromosome 8p23 is associated with a spectrum of congenital heart defects. Circulation. 2000; 102 :432–437. [PubMed] [Google Scholar]
- Gioli-Pereira L, Pereira AC, Bergara D, Mesquita S, Lopes AA, Krieger JE. Frequency of 22q11.2 microdeletion in sporadic non-syndromic tetralogy of Fallot cases. Int J Cardiol. 2008; 126 :374–378. [PubMed] [Google Scholar]
- Gioli-Pereira L, Pereira AC, Mesquita SM, Xavier-Neto J, Lopes AA, Krieger JE. NKX2.5 mutations in patients with non-syndromic congenital heart disease. Int J Cardiol. 2010; 138 :261–265. [PubMed] [Google Scholar]
- Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, Reed L, McDonald-McGinn D, Chien P, Feuer J, Zackai EH, Emanuel BS, Driscoll DA. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol. 1998; 32 :492–498. [PubMed] [Google Scholar]
- Goldmuntz E, Paluru P, Glessner J, Hakonarson H, Biegel JA, White PS, Gai X, Shaikh TH. Microdeletions and Microduplications in Patients with Congenital Heart Disease and Multiple Congenital Anomalies. Congenit Heart Dis. 2011 in press. [PMC free article] [PubMed] [Google Scholar]
- Goodship J, Cross I, LiLing J, Wren C. A population study of chromosome 22q11 deletions in infancy. Arch Dis Child. 1998; 79 :348–351. [PMC free article] [PubMed] [Google Scholar]
- Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA, Gorham JM, Gabriel S, Altshuler DM, de Quintanilla-Dieck ML, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA, Weinblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009; 41 :931–935. [PMC free article] [PubMed] [Google Scholar]
- Greulich F, Rudat C, Kispert A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 2011; 91 :212–222. [PubMed] [Google Scholar]
- Guida V, Lepri F, Vijzelaar R, De Zorzi A, Versacci P, Digilio MC, Marino B, De Luca A, Dallapiccola B. Multiplex ligation-dependent probe amplification analysis of GATA4 gene copy number variations in patients with isolated congenital heart disease. Dis Markers. 2010; 28 :287–292. [PMC free article] [PubMed] [Google Scholar]
- Gutierrez-Roelens I, Sluysmans T, Gewillig M, Devriendt K, Vikkula M. Progressive AV-block and anomalous venous return among cardiac anomalies associated with two novel missense mutations in the CSX/NKX2-5 gene. Hum Mutat. 2002; 20 :75–76. [PubMed] [Google Scholar]
- Hammer S, Toenjes M, Lange M, Fischer JJ, Dunkel I, Mebus S, Grimm CH, Hetzer R, Berger F, Sperling S. Characterization of TBX20 in human hearts and its regulation by TFAP2. J Cell Biochem. 2008; 104 :1022–1033. [PubMed] [Google Scholar]
- Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002; 3 :544–556. [PubMed] [Google Scholar]
- Harvey RP, Lai D, Elliott D, Biben C, Solloway M, Prall O, Stennard F, Schindeler A, Groves N, Lavulo L, Hyun C, Yeoh T, Costa M, Furtado M, Kirk E. Homeodomain factor Nkx2-5 in heart development and disease. Cold Spring Harb Symp Quant Biol. 2002; 67 :107–114. [PubMed] [Google Scholar]
- Hatcher CJ, Basson CT. Specification of the cardiac conduction system by transcription factors. Circ Res. 2009; 105 :620–630. [PMC free article] [PubMed] [Google Scholar]
- He A, Kong SW, Ma Q, Pu WT. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A. 2011; 108 :5632–5637. [PMC free article] [PubMed] [Google Scholar]
- Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005; 14 :585–593. [PubMed] [Google Scholar]
- Heinritz W, Zweier C, Froster UG, Strenge S, Kujat A, Syrbe S, Rauch A, Schuster V. A missense mutation in the ZFHX1B gene associated with an atypical Mowat-Wilson syndrome phenotype. Am J Med Genet A. 2006; 140 :1223–1227. [PubMed] [Google Scholar]
- Henwood J, Pickard C, Leek JP, Bennett CP, Crow YJ, Thompson JD, Ahmed M, Watterson KG, Parsons JM, Roberts E, Lench NJ. A region of homozygosity within 22q11.2 associated with congenital heart disease: recessive DiGeorge/velocardiofacial syndrome? J Med Genet. 2001; 38 :533–536. [PMC free article] [PubMed] [Google Scholar]
- Heritage ML, MacMillan JC, Anderson GJ. DHPLC mutation analysis of Jagged1 (JAG1) reveals six novel mutations in Australian alagille syndrome patients. Hum Mutat. 2002; 20 :481. [PubMed] [Google Scholar]
- Heritage ML, MacMillan JC, Colliton RP, Genin A, Spinner NB, Anderson GJ. Jagged1 (JAG1) mutation detection in an Australian Alagille syndrome population. Hum Mutat. 2000; 16 :408–416. [PubMed] [Google Scholar]
- Hirayama-Yamada K, Kamisago M, Akimoto K, Aotsuka H, Nakamura Y, Tomita H, Furutani M, Imamura S, Takao A, Nakazawa M, Matsuoka R. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005; 135 :47–52. [PubMed] [Google Scholar]
- Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet. 2001; 28 :276–280. [PubMed] [Google Scholar]
- Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J. 2004; 147 :425–439. [PubMed] [Google Scholar]
- Hokanson JS, Pierpont E, Hirsch B, Moller JH. 22q11.2 microdeletions in adults with familial tetralogy of Fallot. Genet Med. 2001; 3 :61–64. [PubMed] [Google Scholar]
- Hu Y, Zhu X, Yang Y, Mo X, Sheng M, Yao J, Wang D. Incidences of micro-deletion/duplication 22q11.2 detected by multiplex ligation-dependent probe amplification in patients with congenital cardiac disease who are scheduled for cardiac surgery. Cardiol Young. 2009; 19 :179–184. [PubMed] [Google Scholar]
- Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol. 2007; 18 :101–110. [PMC free article] [PubMed] [Google Scholar]
- Ikeda Y, Hiroi Y, Hosoda T, Utsunomiya T, Matsuo S, Ito T, Inoue J, Sumiyoshi T, Takano H, Nagai R, Komuro I. Novel point mutation in the cardiac transcription factor CSX/NKX2.5 associated with congenital heart disease. Circ J. 2002; 66 :561–563. [PubMed] [Google Scholar]
- Iserin L, de Lonlay P, Viot G, Sidi D, Kachaner J, Munnich A, Lyonnet S, Vekemans M, Bonnet D. Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr. 1998; 157 :881–884. [PubMed] [Google Scholar]
- Ito T, Okubo T, Sato H. Familial 22q11.2 deletion: an infant with interrupted aortic arch and DiGeorge syndrome delivered from by a mother with tetralogy of Fallot. Eur J Pediatr. 2002; 161 :173–174. [PubMed] [Google Scholar]
- Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O’Brien TX, Gourdie RG, Berul CI, Izumo S. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 2004; 113 :1130–1137. [PMC free article] [PubMed] [Google Scholar]
- Jiang L, Duan C, Chen B, Hou Z, Chen Z, Li Y, Huan Y, Wu KK. Association of 22q11 deletion with isolated congenital heart disease in three Chinese ethnic groups. Int J Cardiol. 2005; 105 :216–223. [PubMed] [Google Scholar]
- Jiang L, Hou Z, Duan C, Chen B, Chen Z, Li Y, Huan Y, Wu KK. Isolated congenital heart disease is associated with the 22q11 deletion even though it is rare. Int J Cardiol. 2010; 145 :284–285. [PubMed] [Google Scholar]
- Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS, Harvey RP. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007; 81 :280–291. [PMC free article] [PubMed] [Google Scholar]
- Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A. 2009; 106 :13933–13938. [PMC free article] [PubMed] [Google Scholar]
- Konig K, Will JC, Berger F, Muller D, Benson DW. Familial congenital heart disease, progressive atrioventricular block and the cardiac homeobox transcription factor gene NKX2.5: identification of a novel mutation. Clin Res Cardiol. 2006; 95 :499–503. [PubMed] [Google Scholar]
- Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997; 11 :1048–1060. [PubMed] [Google Scholar]
- Krantz ID, Smith R, Colliton RP, Tinkel H, Zackai EH, Piccoli DA, Goldmuntz E, Spinner NB. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet. 1999; 84 :56–60. [PubMed] [Google Scholar]
- Li FB, Chen J, Yu JD, Gao H, Qi M. A Chinese girl molecularly diagnosed with Alagille syndrome. World J Pediatr. 2010; 6 :278–280. [PubMed] [Google Scholar]
- Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997a; 16 :243–251. [PubMed] [Google Scholar]
- Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997b; 15 :21–29. [PubMed] [Google Scholar]
- Liberatore CM, Searcy-Schrick RD, Vincent EB, Yutzey KE. Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev Biol. 2002; 244 :243–256. [PubMed] [Google Scholar]
- Lien CL, McAnally J, Richardson JA, Olson EN. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev Biol. 2002; 244 :257–266. [PubMed] [Google Scholar]
- Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development. 1999; 126 :75–84. [PubMed] [Google Scholar]
- Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y, Chen YH. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet. 2010; 55 :662–667. [PubMed] [Google Scholar]
- Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997; 276 :1404–1407. [PMC free article] [PubMed] [Google Scholar]
- Lindsay EA, Goldberg R, Jurecic V, Morrow B, Carlson C, Kucherlapati RS, Shprintzen RJ, Baldini A. Velo-cardio-facial syndrome: frequency and extent of 22q11 deletions. Am J Med Genet. 1995; 57 :514–522. [PubMed] [Google Scholar]
- Liu C, Shen A, Li X, Jiao W, Zhang X, Li Z. T-box transcription factor TBX20 mutations in Chinese patients with congenital heart disease. Eur J Med Genet. 2008; 51 :580–587. [PubMed] [Google Scholar]
- Liu CX, Shen AD, Li XF, Jiao WW, Bai S, Yuan F, Guan XL, Zhang XG, Zhang GR, Li ZZ. Association of TBX5 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin Med J (Engl) 2009; 122 :30–34. [PubMed] [Google Scholar]
- Liu XY, Wang J, Zheng JH, Bai K, Liu ZM, Wang XZ, Liu X, Fang WY, Yang YQ. Involvement of a novel GATA4 mutation in atrial septal defects. Int J Mol Med. 2011; 28 :17–23. [PubMed] [Google Scholar]
- Lupski JR, Langston C, Friedman R, Ledbetter DH, Greenberg F. Di George anomaly associated with a de novo Y;22 translocation resulting in monosomy del(22)(q11.2) Am J Med Genet. 1991; 40 :196–198. [PubMed] [Google Scholar]
- Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995; 9 :1654–1666. [PubMed] [Google Scholar]
- Maclean K, Smith J, St Heaps L, Chia N, Williams R, Peters GB, Onikul E, McCrossin T, Lehmann OJ, Ades LC. Axenfeld-Rieger malformation and distinctive facial features: Clues to a recognizable 6p25 microdeletion syndrome. Am J Med Genet A. 2005; 132 :381–385. [PubMed] [Google Scholar]
- Maitra M, Koenig SN, Srivastava D, Garg V. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res. 2010; 68 :281–285. [PMC free article] [PubMed] [Google Scholar]
- Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V. Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol. 2009; 326 :368–377. [PMC free article] [PubMed] [Google Scholar]
- Mani A, Radhakrishnan J, Farhi A, Carew KS, Warnes CA, Nelson-Williams C, Day RW, Pober B, State MW, Lifton RP. Syndromic patent ductus arteriosus: evidence for haploinsufficient TFAP2B mutations and identification of a linked sleep disorder. Proc Natl Acad Sci U S A. 2005; 102 :2975–2979. [PMC free article] [PubMed] [Google Scholar]
- Matsuoka R, Takao A, Kimura M, Imamura S, Kondo C, Joh-o K, Ikeda K, Nishibatake M, Ando M, Momma K. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2. Am J Med Genet. 1994; 53 :285–289. [PubMed] [Google Scholar]
- McDermott DA, Hatcher CJ, Basson CT. Atrial Fibrillation and Other Clinical Manifestations of Altered TBX5 Dosage in Typical Holt-Oram Syndrome. Circ Res. 2008; 103 :e96. [PMC free article] [PubMed] [Google Scholar]
- McElhinney DB, Clark BJ, 3rd, Weinberg PM, Kenton ML, McDonald-McGinn D, Driscoll DA, Zackai EH, Goldmuntz E. Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching. J Am Coll Cardiol. 2001; 37 :2114–2119. [PubMed] [Google Scholar]
- McElhinney DB, Driscoll DA, Levin ER, Jawad AF, Emanuel BS, Goldmuntz E. Chromosome 22q11 deletion in patients with ventricular septal defect: frequency and associated cardiovascular anomalies. Pediatrics. 2003a; 112 :e472. [PubMed] [Google Scholar]
- McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003b; 42 :1650–1655. [PubMed] [Google Scholar]
- McGaughran J, Sinnott S, Dastot-Le Moal F, Wilson M, Mowat D, Sutton B, Goossens M. Recurrence of Mowat-Wilson syndrome in siblings with the same proven mutation. Am J Med Genet A. 2005; 137A :302–304. [PubMed] [Google Scholar]
- Molkentin JD, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 1997; 11 :1061–1072. [PubMed] [Google Scholar]
- Morin S, Charron F, Robitaille L, Nemer M. GATA-dependent recruitment of MEF2 proteins to target promoters. Embo J. 2000; 19 :2046–2055. [PMC free article] [PubMed] [Google Scholar]
- Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J, Nobrega MA, Yokota Y, Berul C, Izumo S, Seidman JG, Seidman CE. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell. 2007; 129 :1365–1376. [PubMed] [Google Scholar]
- Moskowitz IP, Wang J, Peterson MA, Pu WT, Mackinnon AC, Oxburgh L, Chu GC, Sarkar M, Berul C, Smoot L, Robertson EJ, Schwartz R, Seidman JG, Seidman CE. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc Natl Acad Sci U S A. 2011; 108 :4006–4011. [PMC free article] [PubMed] [Google Scholar]
- Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA, Olson EN. Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development. 2009; 136 :2665–2674. [PMC free article] [PubMed] [Google Scholar]
- Nemer G, Fadlalah F, Usta J, Nemer M, Dbaibo G, Obeid M, Bitar F. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat. 2006; 27 :293–294. [PubMed] [Google Scholar]
- Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997; 16 :235–242. [PubMed] [Google Scholar]
- Oh DC, Min JY, Lee MH, Kim YM, Park SY, Won HS, Kim IK, Lee YH, Yoo SJ, Ryu HM. Prenatal diagnosis of tetralogy of Fallot associated with chromosome 22q11 deletion. J Korean Med Sci. 2002; 17 :125–128. [PMC free article] [PubMed] [Google Scholar]
- Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol. 2007; 18 :117–131. [PMC free article] [PubMed] [Google Scholar]
- Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, Yoshiura K, Kishino T, Ohta T, Niikawa N, Matsumoto N. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet. 2004; 41 :e97. [PMC free article] [PubMed] [Google Scholar]
- Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313 :1922–1927. [PMC free article] [PubMed] [Google Scholar]
- Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J, Lenzi T, Keegan CE, Sutton VR, Belmont J, Chinault AC, Lupski JR, Cheung SW, Roeder E, Patel A. Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med. 2008; 10 :267–277. [PubMed] [Google Scholar]
- Ouyang P, Saarel E, Bai Y, Luo C, Lv Q, Xu Y, Wang F, Fan C, Younoszai A, Chen Q, Tu X, Wang QK. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin Chim Acta. 2011; 412 :170–175. [PMC free article] [PubMed] [Google Scholar]
- Pabst S, Wollnik B, Rohmann E, Hintz Y, Glanzer K, Vetter H, Nickenig G, Grohe C. A novel stop mutation truncating critical regions of the cardiac transcription factor NKX2-5 in a large family with autosomal-dominant inherited congenital heart disease. Clin Res Cardiol. 2008; 97 :39–42. [PubMed] [Google Scholar]
- Paradisi I, Arias S. IVIC syndrome is caused by a c 2607d elA mutation in the SALL4 locus. Am J Med Genet A. 2007; 143 :326–332. [PubMed] [Google Scholar]
- Pauli RM, Scheib-Wixted S, Cripe L, Izumo S, Sekhon GS. Ventricular noncompaction and distal chromosome 5q deletion. Am J Med Genet. 1999; 85 :419–423. [PubMed] [Google Scholar]
- Pehlivan T, Pober BR, Brueckner M, Garrett S, Slaugh R, Van Rheeden R, Wilson DB, Watson MS, Hing AV. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet. 1999; 83 :201–206. [PubMed] [Google Scholar]
- Peng T, Wang L, Zhou SF, Li X. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica. 2010; 138 :1231–1240. [PubMed] [Google Scholar]
- Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005; 243 :287–335. [PubMed] [Google Scholar]
- Peterkin T, Gibson A, Loose M, Patient R. The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol. 2005; 16 :83–94. [PubMed] [Google Scholar]
- Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H. GATA transcription factors in the developing and adult heart. Cardiovasc Res. 2004; 63 :196–207. [PubMed] [Google Scholar]
- Pizzuti A, Sarkozy A, Newton AL, Conti E, Flex E, Digilio MC, Amati F, Gianni D, Tandoi C, Marino B, Crossley M, Dallapiccola B. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat. 2003; 22 :372–377. [PubMed] [Google Scholar]
- Poon LC, Huggon IC, Zidere V, Allan LD. Tetralogy of Fallot in the fetus in the current era. Ultrasound Obstet Gynecol. 2007; 29 :625–627. [PubMed] [Google Scholar]
- Posch MG, Boldt LH, Polotzki M, Richter S, Rolf S, Perrot A, Dietz R, Ozcelik C, Haverkamp W. Mutations in the cardiac transcription factor GATA4 in patients with lone atrial fibrillation. Eur J Med Genet. 2010a; 53 :201–203. [PubMed] [Google Scholar]
- Posch MG, Gramlich M, Sunde M, Schmitt KR, Lee SH, Richter S, Kersten A, Perrot A, Panek AN, Al Khatib IH, Nemer G, Megarbane A, Dietz R, Stiller B, Berger F, Harvey RP, Ozcelik C. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet. 2010b; 47 :230–235. [PMC free article] [PubMed] [Google Scholar]
- Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AA, Lekanne Deprez RH, Moorman AF. A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res. 2008; 102 :1433–1442. [PubMed] [Google Scholar]
- Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham ME, Harvey RP. An Nkx2–5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007; 128 :947–959. [PMC free article] [PubMed] [Google Scholar]
- Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S. GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol. 2004; 275 :235–244. [PubMed] [Google Scholar]
- Qian L, Mohapatra B, Akasaka T, Liu J, Ocorr K, Towbin JA, Bodmer R. Transcription factor neuromancer/TBX20 is required for cardiac function in Drosophila with implications for human heart disease. Proc Natl Acad Sci U S A. 2008; 105 :19833–19838. [PMC free article] [PubMed] [Google Scholar]
- Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, Goldmuntz E, Broman KW, Benson DW, Smoot LB, Pu WT. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol. 2007; 43 :677–685. [PMC free article] [PubMed] [Google Scholar]
- Ransom JF, King IN, Garg V, Srivastava D. A rare human sequence variant reveals myocardin autoinhibition. J Biol Chem. 2008; 283 :35845–35852. [PMC free article] [PubMed] [Google Scholar]
- Rauch A, Devriendt K, Koch A, Rauch R, Gewillig M, Kraus C, Weyand M, Singer H, Reis A, Hofbeck M. Assessment of association between variants and haplotypes of the remaining TBX1 gene and manifestations of congenital heart defects in 22q11.2 deletion patients. J Med Genet. 2004; 41 :e40. [PMC free article] [PubMed] [Google Scholar]
- Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, Hoyer J, Kaulitz R, Singer H, Rauch A. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet. 2010; 47 :321–331. [PubMed] [Google Scholar]
- Raymond FL, Simpson JM, Mackie CM, Sharland GK. Prenatal diagnosis of 22q11 deletions: a series of five cases with congenital heart defects. J Med Genet. 1997; 34 :679–682. [PMC free article] [PubMed] [Google Scholar]
- Reamon-Buettner SM, Borlak J. Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease. J Med Genet. 2004a; 41 :684–690. [PMC free article] [PubMed] [Google Scholar]
- Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat. 2004b; 24 :104. [PubMed] [Google Scholar]
- Reamon-Buettner SM, Borlak J. NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD) Hum Mutat. 2010; 31 :1185–1194. [PubMed] [Google Scholar]
- Reamon-Buettner SM, Cho SH, Borlak J. Mutations in the 3′-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD) BMC Med Genet. 2007; 8 :38. [PMC free article] [PubMed] [Google Scholar]
- Reamon-Buettner SM, Ciribilli Y, Inga A, Borlak J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet. 2008; 17 :1397–1405. [PubMed] [Google Scholar]
- Reamon-Buettner SM, Ciribilli Y, Traverso I, Kuhls B, Inga A, Borlak J. A functional genetic study identifies HAND1 mutations in septation defects of the human heart. Hum Mol Genet. 2009; 18 :3567–3578. [PubMed] [Google Scholar]
- Reamon-Buettner SM, Hecker H, Spanel-Borowski K, Craatz S, Kuenzel E, Borlak J. Novel NKX2-5 mutations in diseased heart tissues of patients with cardiac malformations. Am J Pathol. 2004; 164 :2117–2125. [PMC free article] [PubMed] [Google Scholar]
- Repetto GM, Guzman ML, Puga A, Calderon JF, Astete CP, Aracena M, Arriaza M, Aravena T, Sanz P. Clinical features of chromosome 22q11.2 microdeletion syndrome in 208 Chilean patients. Clin Genet. 2009; 76 :465–470. [PubMed] [Google Scholar]
- Rojas A, Kong SW, Agarwal P, Gilliss B, Pu WT, Black BL. GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium. Mol Cell Biol. 2008; 28 :5420–5431. [PMC free article] [PubMed] [Google Scholar]
- Rope AF, Cragun DL, Saal HM, Hopkin RJ. DiGeorge anomaly in the absence of chromosome 22q11.2 deletion. J Pediatr. 2009; 155 :560–565. [PubMed] [Google Scholar]
- Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005; 115 :2305–2315. [PMC free article] [PubMed] [Google Scholar]
- Sarkozy A, Conti E, Neri C, D’Agostino R, Digilio MC, Esposito G, Toscano A, Marino B, Pizzuti A, Dallapiccola B. Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet. 2005; 42 :e16. [PMC free article] [PubMed] [Google Scholar]
- Ryan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, Schuffenhauer S, Oechsler H, Belohradsky B, Prieur M, Aurias A, Raymond FL, Clayton-Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst JA, Ignatius J, Green AJ, Winter RM, Brueton L, Brondum-Nielsen K, Scambler PJ, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997; 34 :798–804. [PMC free article] [PubMed] [Google Scholar]
- Sarkozy A, Conti E, Neri C, D’Agostino R, Digilio MC, Esposito G, Toscano A, Marino B, Pizzuti A, Dallapiccola B. Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet. 2005; 42 :e16. [PMC free article] [PubMed] [Google Scholar]
- Sasongko TH, Sadewa AH, Gunadi, Lee MJ, Koterazawa K, Nishio H. Nonsense mutations of the ZFHX1B gene in two Japanese girls with Mowat-Wilson syndrome. Kobe J Med Sci. 2007; 53 :157–162. [PubMed] [Google Scholar]
- Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, Davidson HR, Pierpont ME, Gelb BD. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet. 2000; 25 :42–46. [PubMed] [Google Scholar]
- Saunders CJ, Zhao W, Ardinger HH. Comprehensive ZEB2 gene analysis for Mowat-Wilson syndrome in a North American cohort: a suggested approach to molecular diagnostics. Am J Med Genet A. 2009; 149A :2527–2531. [PubMed] [Google Scholar]
- Schluterman MK, Krysiak AE, Kathiriya IS, Abate N, Chandalia M, Srivastava D, Garg V. Screening and biochemical analysis of GATA4 sequence variations identified in patients with congenital heart disease. Am J Med Genet A. 2007; 143A :817–823. [PubMed] [Google Scholar]
- Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998; 281 :108–111. [PubMed] [Google Scholar]
- Searcy RD, Vincent EB, Liberatore CM, Yutzey KE. A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development. 1998; 125 :4461–4470. [PubMed] [Google Scholar]
- Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ. Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity. J Biol Chem. 2002; 277 :25775–25782. [PubMed] [Google Scholar]
- Shen L, Li XF, Shen AD, Wang Q, Liu CX, Guo YJ, Song ZJ, Li ZZ. Transcription factor HAND2 mutations in sporadic Chinese patients with congenital heart disease. Chin Med J (Engl) 2010; 123 :1623–1627. [PubMed] [Google Scholar]
- Sorensen KM, Agergaard P, Olesen C, Andersen PS, Larsen LA, Ostergaard JR, Schouten JP, Christiansen M. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples. J Mol Diagn. 2010; 12 :147–151. [PMC free article] [PubMed] [Google Scholar]
- Sparkes R, Chernos J, Dicke F. Duplication of the 22q11.2 region associated with congenital cardiac disease. Cardiol Young. 2005; 15 :229–231. [PubMed] [Google Scholar]
- Sperling S, Grimm CH, Dunkel I, Mebus S, Sperling HP, Ebner A, Galli R, Lehrach H, Fusch C, Berger F, Hammer S. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005; 26 :575–582. [PubMed] [Google Scholar]
- Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E. Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet. 2010; 78 :533–540. [PubMed] [Google Scholar]
- Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. Annu Rev Pathol. 2006; 1 :199–213. [PubMed] [Google Scholar]
- Svensson EC, Huggins GS, Lin H, Clendenin C, Jiang F, Tufts R, Dardik FB, Leiden JM. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet. 2000; 25 :353–356. [PubMed] [Google Scholar]
- Svensson EC, Tufts RL, Polk CE, Leiden JM. Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci U S A. 1999; 96 :956–961. [PMC free article] [PubMed] [Google Scholar]
- Swaby JA, Silversides CK, Bekeschus SC, Piran S, Oechslin EN, Chow EW, Bassett AS. Complex congenital heart disease in unaffected relatives of adults with 22q11.2 deletion syndrome. Am J Cardiol. 2011; 107 :466–471. [PMC free article] [PubMed] [Google Scholar]
- Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, Gertsenstein M, Georges R, Davidson L, Mo R, Hui CC, Henkelman RM, Nemer M, Black BL, Nagy A, Bruneau BG. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development. 2005; 132 :2463–2474. [PubMed] [Google Scholar]
- Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999; 126 :1269–1280. [PubMed] [Google Scholar]
- Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000; 101 :729–739. [PubMed] [Google Scholar]
- Tomita-Mitchell A, Mahnke DK, Larson JM, Ghanta S, Feng Y, Simpson PM, Broeckel U, Duffy K, Tweddell JS, Grossman WJ, Routes JM, Mitchell ME. Multiplexed quantitative real-time PCR to detect 22q11.2 deletion in patients with congenital heart disease. Physiol Genomics. 2010; 42A :52–60. [PMC free article] [PubMed] [Google Scholar]
- Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E. GATA4 sequence variants in patients with congenital heart disease. J Med Genet. 2007; 44 :779–783. [PMC free article] [PubMed] [Google Scholar]
- van Engelen K, Topf A, Keavney BD, Goodship JA, van der Velde ET, Baars MJ, Snijder S, Moorman AF, Postma AV, Mulder BJ. 22q11.2 Deletion Syndrome is under-recognised in adult patients with tetralogy of Fallot and pulmonary atresia. Heart. 2010; 96 :621–624. [PubMed] [Google Scholar]
- Vaughan CJ, Basson CT. Molecular determinants of atrial and ventricular septal defects and patent ductus arteriosus. Am J Med Genet. 2000; 97 :304–309. [PubMed] [Google Scholar]
- Verhoeven W, Egger J, Brunner H, de Leeuw N. A patient with a de novo distal 22q11.2 microdeletion and anxiety disorder. Am J Med Genet A. 2011; 155A :392–397. [PubMed] [Google Scholar]
- Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010; 90 :1–41. [PubMed] [Google Scholar]
- Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB. Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev Dyn. 2008; 237 :3809–3819. [PMC free article] [PubMed] [Google Scholar]
- Wang B, Li L, Xie X, Wang J, Yan J, Mu Y, Ma X. Genetic variation of SAL-Like 4 (SALL4) in ventricular septal defect. Int J Cardiol. 2010; 145 :224–226. [PubMed] [Google Scholar]
- Wang J, Lu Y, Chen H, Yin M, Yu T, Fu Q. Investigation of somatic NKX2-5, GATA4 and HAND1 mutations in patients with tetralogy of Fallot. Pathology. 2011a; 43 :322–326. [PubMed] [Google Scholar]
- Wang J, Xin YF, Liu XY, Liu ZM, Wang XZ, Yang YQ. A novel NKX2-5 mutation in familial ventricular septal defect. Int J Mol Med. 2011b; 27 :369–375. [PubMed] [Google Scholar]
- Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, Towbin J, Belmont JW. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet. 2004; 74 :93–105. [PMC free article] [PubMed] [Google Scholar]
- Wilson DI, Goodship JA, Burn J, Cross IE, Scambler PJ. Deletions within chromosome 22q11 in familial congenital heart disease. Lancet. 1992; 340 :573–575. [PubMed] [Google Scholar]
- Wilson M, Mowat D, Dastot-Le Moal F, Cacheux V, Kaariainen H, Cass D, Donnai D, Clayton-Smith J, Townshend S, Curry C, Gattas M, Braddock S, Kerr B, Aftimos S, Zehnwirth H, Barrey C, Goossens M. Further delineation of the phenotype associated with heterozygous mutations in ZFHX1B. Am J Med Genet A. 2003; 119A :257–265. [PubMed] [Google Scholar]
- Worthington S, Bower C, Harrop K, Loh J, Walpole I. 22q11 deletions in patients with conotruncal heart defects. J Paediatr Child Health. 1998; 34 :438–443. [PubMed] [Google Scholar]
- Wozniak A, Wolnik-Brzozowska D, Wisniewska M, Glazar R, Materna-Kiryluk A, Moszura T, Badura-Stronka M, Skolozdrzy J, Krawczynski MR, Zeyland J, Bobkowski W, Slomski R, Latos-Bielenska A, Siwinska A. Frequency of 22q11.2 microdeletion in children with congenital heart defects in western poland. BMC Pediatr. 2010; 10 :88. [PMC free article] [PubMed] [Google Scholar]
- Yakut T, Kilic SS, Cil E, Yapici E, Egeli U. FISH investigation of 22q11.2 deletion in patients with immunodeficiency and/or cardiac abnormalities. Pediatr Surg Int. 2006; 22 :380–383. [PubMed] [Google Scholar]
- Yamagishi H, Yamagishi C, Nakagawa O, Harvey RP, Olson EN, Srivastava D. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol. 2001; 239 :190–203. [PubMed] [Google Scholar]
- Yates RW, Raymond FL, Cook A, Sharland GK. Isomerism of the atrial appendages associated with 22q11 deletion in a fetus. Heart. 1996; 76 :548–549. [PMC free article] [PubMed] [Google Scholar]
- Ye M, Coldren C, Liang X, Mattina T, Goldmuntz E, Benson DW, Ivy D, Perryman MB, Garrett-Sinha LA, Grossfeld P. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010; 19 :648–656. [PMC free article] [PubMed] [Google Scholar]
- Yehya A, Souki R, Bitar F, Nemer G. Differential duplication of an intronic region in the NFATC1 gene in patients with congenital heart disease. Genome. 2006; 49 :1092–1098. [PubMed] [Google Scholar]
- Yong DE, Booth P, Baruni J, Massie D, Stephen G, Couzin D, Dean JC. Chromosome 22q11 microdeletion and congenital heart disease--a survey in a paediatric population. Eur J Pediatr. 1999; 158 :566–570. [PubMed] [Google Scholar]
- Yu S, Shao L, Kilbride H, Zwick DL. Haploinsufficiencies of FOXF1 and FOXC2 genes associated with lethal alveolar capillary dysplasia and congenital heart disease. Am J Med Genet A. 2010; 152A :1257–1262. [PubMed] [Google Scholar]
- Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet. 2008; 51 :527–535. [PubMed] [Google Scholar]
- Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z. Screening NKX2.5 mutation in a sample of 230 Han Chinese children with congenital heart diseases. Genet Test Mol Biomarkers. 2009a; 13 :159–162. [PubMed] [Google Scholar]
- Zhang WM, Li XF, Ma ZY, Zhang J, Zhou SH, Li T, Shi L, Li ZZ. GATA4 and NKX2.5 gene analysis in Chinese Uygur patients with congenital heart disease. Chin Med J (Engl) 2009b; 122 :416–419. [PubMed] [Google Scholar]
- Zhao F, Weismann CG, Satoda M, Pierpont ME, Sweeney E, Thompson EM, Gelb BD. Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet. 2001; 69 :695–703. [PMC free article] [PubMed] [Google Scholar]
- Zhu W, Shiojima I, Hiroi Y, Zou Y, Akazawa H, Mizukami M, Toko H, Yazaki Y, Nagai R, Komuro I. Functional analyses of three Csx/Nkx-2.5 mutations that cause human congenital heart disease. J Biol Chem. 2000; 275 :35291–35296. [PubMed] [Google Scholar]
- Zhu Y, Gramolini AO, Walsh MA, Zhou YQ, Slorach C, Friedberg MK, Takeuchi JK, Sun H, Henkelman RM, Backx PH, Redington AN, Maclennan DH, Bruneau BG. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proc Natl Acad Sci U S A. 2008; 105 :5519–5524. [PMC free article] [PubMed] [Google Scholar]
- Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M, Ala-Mello S, Beemer F, Bernasconi S, Bianchi P, Bier A, Devriendt K, Dimitrov B, Firth H, Gallagher RC, Garavelli L, Gillessen-Kaesbach G, Hudgins L, Kaariainen H, Karstens S, Krantz I, Mannhardt A, Medne L, Mucke J, Kibaek M, Krogh LN, Peippo M, Rittinger O, Schulz S, Schelley SL, Temple IK, Dennis NR, Van der Knaap MS, Wheeler P, Yerushalmi B, Zenker M, Seidel H, Lachmeijer A, Prescott T, Kraus C, Lowry RB, Rauch A. Clinical and mutational spectrum of Mowat-Wilson syndrome. Eur J Med Genet. 2005; 48 :97–111. [PubMed] [Google Scholar]